LECTURE SUMMARY 1.2

1. Review and constant " C "

1. Review what we have learned last lecture.
2. For the constant "C", after each integration, any algebraic operation of "C" could be replaced by a new "C".

2. Riemann Sum

1. Summation Notation.
e.g. $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x$.
e.g. $2+2^{2}+2^{3}+\ldots+2^{6}=\sum_{i=1}^{6} 2^{i}$
2. Approximation of integral by Riemann Sum, $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$. Here we call $R_{n}:=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ the Riemann sum, $\Delta x=\frac{b-a}{n}$ is the length of each subintervals, and x_{i} is any point in the i-th interval, we call it sample point. Usually, we take x_{i} to be the left endpoint, right endpoint, or midpoint of each subinterval.
3. examples.

3. Simpson's Rule

1.Simpson's approximation of $\int_{a}^{b} f(x) d x$ using n subintervals is
$S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+4 f\left(x_{n-3}\right)+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
where n is always even, $\Delta x=\frac{b-a}{n}, x_{i}=a+i \Delta x$.
2 . examples.

